OCR A Further Maths A-level Pure Core
 Formula Sheet

Complex Numbers
The Language of Complex Numbers

Cartesian form of a complex number

Modulus-argument form of a complex number

Exponential form

Complex conjugate of a complex number

$$
\begin{gathered}
z=a+i b \\
a=\operatorname{Re}(z), \quad b=\operatorname{Im}(z) \\
z=a+b i, \quad|z|=r=\sqrt{a^{2}+b^{2}} \\
\arg (z)=\theta=\tan ^{-1}\left(\frac{b}{a}\right) \\
z=r(\cos \theta+i \sin \theta)=[r, \theta] \\
z=a+b i=r \mathrm{e}^{i \theta} \\
r=\sqrt{a^{2}+b^{2}}, \quad \theta=\tan ^{-1}\left(\frac{b}{a}\right)
\end{gathered}
$$

$z=a+i b$ has complex conjugate $z^{*}=a-b i$

$$
\left(r e^{i \theta}\right)^{*}=r e^{-i \theta}
$$

Basic Operations

Multiplication in modulusargument form

$$
\begin{gathered}
z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|, \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)
\end{gathered}
$$

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)
$$

$$
\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, \quad \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)
$$

Loci

Loci of points z such that

$$
|z-a|=k
$$

Loci of points z such that $|z-a|=|z-b|$

Loci of points z such that $\arg (z-a)=\alpha$

Circle of radius k centred on $(\operatorname{Re}(a), \operatorname{Im}(a))$

Perpendicular bisector of the line from a to b

Half-line starting from a making an angle α with the real axis

De Moivre's Theorem

De Moivre's theorem

$$
z^{n}=\left(r(\cos (\theta)+i \sin (\theta))^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta))\right.
$$

$\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2}$
$\sin (\theta)=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$

Let $z=e^{i \theta}$. Then,

$$
\cos (n \theta)=\frac{z^{n}+z^{-n}}{2}, \quad \sin (n \theta)=\frac{z^{n}-z^{-n}}{2 i}
$$

$n^{\text {th }}$ Roots of a Complex Number

Solving to find the $n^{t h}$ roots of a complex number w

Geometry of the $n^{\text {th }}$ roots of a complex number

$$
\begin{gathered}
z^{n}=w . \text { Let } z=r_{1} e^{i \theta_{1}}, w=r_{2} e^{i \theta_{2}} \\
r^{n} e^{i n \theta_{1}}=r_{2} e^{i \theta_{2}} \\
r e^{i \theta_{1}}=\sqrt[n]{r_{2}} e^{i\left(\frac{\theta_{2}}{n}+\frac{2 k \pi}{n}\right)} \\
r=\sqrt[n]{r_{2}}, \quad \theta_{k}=\frac{\theta_{2}}{n}+\frac{2 k \pi}{n}, k \in[0, n-1]
\end{gathered}
$$

The n roots of $z^{n}=w$ will form a regular polygon in the complex plane, with vertices on a circle centred at the origin

An $n^{\text {th }}$ root of unity

Sum of the roots of unity

A complex number z is an $n^{\text {th }}$ root of unity if $z^{n}=1$. They are $\left\{1, e^{\frac{2 \pi i}{n}}, e^{\frac{4 \pi i}{n}}, \ldots, e^{\frac{2(n-1) \pi i}{n}}\right\}=\left\{1, \omega_{1}, \omega_{2}, \ldots, \omega_{n-1}\right\}$

$$
1+\omega_{1}+\cdots+\omega_{n-1}=0
$$

Matrices

The Language of Matrices

An $m \times n$ matrix has m rows and n columns

The null matrix has zeros in every entry

The identity matrix, I, is a square matrix with 1 s on the leading diagonal and 0s elsewhere

The transpose of a matrix $\boldsymbol{A}, \boldsymbol{A}^{T}$, swaps the rows and columns of \boldsymbol{A}

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)^{T}=\left(\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right)
$$

Addition and Multiplication

Addition and subtraction are performed element wise	$\begin{gathered} \left(\begin{array}{lll} a_{1} & b_{1} & c_{1} \\ d_{1} & e_{1} & f_{1} \\ g_{1} & h_{1} & i_{1} \end{array}\right) \pm\left(\begin{array}{lll} a_{2} & b_{2} & c_{2} \\ d_{2} & e_{2} & f_{2} \\ g_{2} & h_{2} & i_{2} \end{array}\right) \\ \left(\begin{array}{lll} a_{1} \pm a_{2} & b_{1} \pm b_{2} & c_{1} \pm c_{2} \\ d_{1} \pm d_{2} & e_{1} \pm e_{2} & f_{1} \pm f_{2} \\ g_{1} \pm g_{2} & h_{1} \pm h_{2} & i_{1} \pm i_{2} \end{array}\right) \end{gathered}$
Matrix multiplication by a scalar	$k\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=\left(\begin{array}{ccc}a k & b k & c k \\ d k & e k & f k \\ g k & h k & i k\end{array}\right)$
Matrix multiplication	$A: m \times n$ matrix, $B: n \times p$ matrix $(\boldsymbol{A B})_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}$ $A B: n \times p$ matrix
Associativity and noncommutativity of matrix multiplication	$A(B \cdot C)=(\boldsymbol{A} \cdot \boldsymbol{B}) C$ $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$ (In general. If this is true, \boldsymbol{A} and \boldsymbol{B} commute

2D Linear Transformations

3D Rotations

Transformation	Associated Matrix
Reflection in x axis.	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Reflection in y axis	$\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
Enlargement by scale factor a	$\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$
Stretch parallel to x axis by scale factor a	$\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$
Stretch parallel to y axis by scale factor a	$\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)$
Reflection in line $y=x$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
Reflection in line $y=-x$	$\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
Anticlockwise rotation by an angle θ	$\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$
Transformation with matrix \boldsymbol{A} followed by transformation with matrix B	$B A$

The direction of positive rotation is taken to be anticlockwise when looking towards the origin from the positive side of the axis of rotation.

Rotation around x axis by an angle θ

Rotation around y axis by an angle θ

$$
\left(\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Invariance Under Transformations

Invariant point $\binom{x}{y}$ under

 a transformation $\boldsymbol{M}$$$
\boldsymbol{M}\binom{x}{y}=\binom{x}{y}
$$

Invariant line l
The image of any point on l is also on l

Determinants

Determinant of a $2 \times$ 2 matrix
Determinant of a matrix product
$\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$
Determinant of a
multiple of an $n \times n$
matrix

Inverses of Matrices

Inverse matrix	$\boldsymbol{A}^{\boldsymbol{1}}$ is the inverse matrix of \boldsymbol{A}, such that $A A^{-1}=A^{-1} A=I$
Singular matrix	$\operatorname{det}(\boldsymbol{A})=0 \Rightarrow \boldsymbol{A}^{\mathbf{- 1}}$ does not exist. \boldsymbol{A} is singular
Inverse of a 2×2 matrix	$\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right), \quad a d-b c \neq 0$
Cofactor of an element determinant of the matrix without the element's row and column	Cofactor of element a in $\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ is $\operatorname{det}\left(\begin{array}{ll} e & f \\ h & i \end{array}\right)$
Cofactor matrix of $\boldsymbol{A}-$ made of the cofactors of all elements of \boldsymbol{A}	Denoted by \boldsymbol{C}
Inverse of a 3×3 matrix	$\boldsymbol{A}^{-\mathbf{1}}=\frac{1}{\operatorname{det}(\boldsymbol{A})} \boldsymbol{C}^{T}$
Inverse of a matrix product	$(\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}$
Inverse of a transformation	For a transformation given by matrix \boldsymbol{M}, its inverse is given by $\boldsymbol{M}^{\mathbf{- 1}}$

Solutions of Simultaneous Equations

Condition for a system
of equations $\boldsymbol{M r}=\boldsymbol{a}$ to have a unique solution

For systems with no unique solution

$$
\operatorname{det}(\boldsymbol{M}) \neq 0
$$

Eliminate a variable from the system. If this leads to consistent equations, there are infinitely many solutions. If the equations are inconsistent, there are no solutions.

Intersections of Planes - the Geometry of the Systems of Equations

A system of three linear equations in three variables will define three planes in 3D space.
The geometry of these planes relates to how many solutions the system of equations has.

There is a unique solution to the system

There are infinitely many solutions to the system

There are no solutions to the system

The planes defined by the equations intersect in one point.

The planes meet along a line, and form a sheaf.

Either all planes are parallel, two planes are parallel, or the planes form a triangular prism.

Further Vectors

Vector and Cartesian Forms of an Equation of a Straight Line

$$
\begin{aligned}
& \begin{array}{l}
\text { Vector equation of } \\
\text { a line through the } \\
\text { point } \boldsymbol{a} \text { parallel to } \\
\text { the vector } \boldsymbol{b}
\end{array} \\
& \begin{array}{c}
\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b} \\
\\
\text { Cartesian equation } \\
\text { of a line in 3D }
\end{array} \\
& \begin{array}{c}
\text { For } \boldsymbol{r}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\lambda\left(\begin{array}{c}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right) \text {, writing } \lambda \text { i। } \\
x-a_{1}
\end{array} \quad y-a_{2}
\end{aligned}
$$

Vector, Cartesian, and Point-Normal Forms of a Plane in 3D

Vector equation of a plane containing the point with position vector \boldsymbol{a}, and containgin vectors \boldsymbol{b} and \boldsymbol{c}

Point-normal equation of a plane. \boldsymbol{a} is the position vector of a point in the plane, and \boldsymbol{n} is the normal to the plane

Cartesian equation of a plane in 3D.
Here, $\boldsymbol{n}=\left(\begin{array}{c}n_{x} \\ n_{y} \\ n_{z}\end{array}\right)$ is the normal vector to $\quad n_{1} x+n_{2} y+n_{3} z=d$ the plane

Scalar Product

Scalar product of two vectors \boldsymbol{a} and \boldsymbol{b}

Angle θ between two vectors $\boldsymbol{a}, \boldsymbol{b}$, or between two lines with these direction vectors
Condition for \boldsymbol{a} and \boldsymbol{b} to be perpendicular vectors
Angle θ between two planes is the same as the angle between their normal vectors
Angle θ between a line and a plane

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=|\boldsymbol{a}||\boldsymbol{b}| \cos (\theta)
$$

$$
\theta=\cos ^{-1}\left(\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}\right)
$$

$$
a \cdot b=0
$$

$$
\begin{gathered}
\pi_{1}: r \cdot n_{1}=a_{1} \cdot n_{1}, \quad \pi_{2}: r . n_{2}=a_{2} \cdot n_{2} \\
\theta=\cos ^{-1}\left(\frac{\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}\right)
\end{gathered}
$$

$$
\begin{gathered}
\boldsymbol{r}=\boldsymbol{a}_{1}+\lambda \boldsymbol{d}, \quad \pi=\boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{a}_{\mathbf{2}} \cdot \boldsymbol{n} \\
\sin (\theta)=\left(\frac{\boldsymbol{n} \cdot \boldsymbol{d}}{|\boldsymbol{n}||\boldsymbol{d}|}\right)
\end{gathered}
$$

Intersections

Intersection type

Parallel lines

Intersecting lines

$$
r_{1}=a_{1}+\lambda_{1} b_{1}, \quad r_{2}=a_{2}+\lambda_{2} b_{2}
$$

$$
b_{1}=\mu b_{2}
$$

There exist values of λ_{1} and λ_{2} such that

$$
r_{1}=r_{2}
$$

Skew
No such λ_{1} and λ_{2} as above exist

$$
\boldsymbol{r}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)+\lambda\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right), \quad \boldsymbol{\pi}=\boldsymbol{c x}+\boldsymbol{d} \boldsymbol{y}+\boldsymbol{f} \boldsymbol{z}=\boldsymbol{g}
$$

If there exists a λ such that
$c\left(a_{1}+\lambda b_{1}\right)+d\left(a_{2}+\lambda b_{2}\right)+f\left(a_{3}+\lambda b_{3}\right)=g$
Then the line and plane intersect. If no such λ exists, they do not intersect.

Vector Product

Vector Product - gives a vector perpendicular to both \boldsymbol{a} and \boldsymbol{b}

$$
\boldsymbol{a} \times \boldsymbol{b}=\left(\begin{array}{l}
a_{2} b_{3}-b_{2} a_{3} \\
a_{3} b_{1}-b_{3} a_{1} \\
a_{1} b_{2}-b_{1} a_{2}
\end{array}\right)
$$

Shortest Distances

Shortest distance, D, between two parallel lines

Shortest distance, D, between a point and a line

Shortest distance, D, between a point and a plane

Shortest distance, D, between two skew lines

$$
\begin{gathered}
r_{1}=\boldsymbol{a}+\lambda_{1} \boldsymbol{d}, \quad \boldsymbol{r}_{2}=\boldsymbol{b}+\lambda_{2} \boldsymbol{d} \\
D=|\boldsymbol{a}-\boldsymbol{b}| \sin (\theta) \text { where } \\
\cos (\theta)=\frac{(\boldsymbol{a}-\boldsymbol{b}) \cdot \boldsymbol{d}}{|\boldsymbol{a}-\boldsymbol{b}||\boldsymbol{d}|}
\end{gathered}
$$

For a point with co-ordinates $\left(x_{1}, y_{1}\right)$, and a line given by

$$
\begin{gathered}
a x+b y=c: \\
D=\frac{\left|a x_{1}+b y_{1}-c\right|}{\sqrt{a^{2}+b^{2}}}
\end{gathered}
$$

For a point with position vector \boldsymbol{b} and a plane with equation $\boldsymbol{r} \cdot \boldsymbol{n}=p$:

$$
D=\frac{|\boldsymbol{b} \cdot \boldsymbol{n}-p|}{|\boldsymbol{n}|}
$$

For points $\boldsymbol{a}, \boldsymbol{b}$ on the lines and a mutually perpendicular vector \boldsymbol{n} :

$$
D=\frac{(\boldsymbol{b}-\boldsymbol{a}) \cdot \boldsymbol{n}}{|\boldsymbol{n}|}
$$

Further Algebra

Roots of Equations

Relationship between the roots and coefficients of a quadratic polynomial
Relationship between the roots and
coefficients of a cubic polynomial

Relationship between the roots and coefficients of a quartic polynomial

Let p and q be roots of $a x^{2}+b x+c=0$. Then,

$$
p+q=-\frac{b}{a}, \quad p q=\frac{c}{a}
$$

Let p, q, and r be the roots of $a x^{3}+b x^{2}+c x+d=0$. Then,

$$
p+q+r=-\frac{b}{a}, \quad p q+q r+r p=\frac{c}{a}, \quad p q r=-\frac{d}{a}
$$

Let p, q, r and s be the roots of $a x^{4}+b x^{3}+c x^{2}+d x+e=0$. Then,

$$
p+q+r+s=-\frac{b}{a}, \quad p q+p r+p s+q r+q s+r s=\frac{c}{a}
$$

$$
p q r+p q s+p r s+q r s=-\frac{d}{a}, \quad p q r s=\frac{e}{a}
$$

Transformations of Equations

Transformation of the roots of an equation, given a transformation of the equation

Let an equation in x have root $x=p$. Given a substitution $u=f(x)$, the transformed equation has a root $u=f(p)$

Partial Fractions

The partial fraction decomposition for denominators

$$
\frac{f(x)}{(x-p)\left(x^{2}+q^{2}\right)}=\frac{A}{x-p}+\frac{B x+c}{x^{2}+q^{2}}
$$ of the form $\frac{1}{q^{2}+x^{2}}$

Series

Summation of Series

$\sum_{r=1}^{r=n} k=n k$	$\sum_{r=1}^{r=n} r=\frac{n}{2}(n+1)$
$\sum_{r=1}^{r=n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$	$\sum_{r=1}^{r=n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$
$\sum\left(u_{r}+v_{r}\right)=\sum u_{r}+\sum v_{r}$	$\sum c u_{r}=c \sum u_{r}$

The Method of Differences

If a general term of a series, v_{r}, can be written in the form $v_{r}=f(r+1)-f(r)$ for some function f, then

$$
\sum_{r=1}^{n} u_{r}=f(n+1)-f(1)
$$

Hyperbolic Functions

Definitions, Domains, Derivatives, and Integrals

Function	Definition and Domain	Derivative	Indefinite Integral
$\sinh (x)$	$\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}, x \in \mathbb{R}$	$\frac{d(\sinh x)}{d x}=\cosh x$	$\cosh (x)+c$
$\cosh (x)$	$\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}, x \in \mathbb{R}$	$\frac{d(\sinh x)}{d x}=\cosh x$	$\sinh (x)+c$
$\tanh (x)$	$\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}, x \in \mathbb{R}$	$\frac{d(\tanh x)}{d x}=\frac{1}{\cosh ^{2} x}$	$\ln \|\cosh (x)\|+c$
	$\cosh ^{2}(x)-\sinh ^{2}(x) \equiv 1$		

Inverse Hyperbolic Functions

Function	Domain	Logarithmic Form
$\sinh ^{-1}(x) / \operatorname{arsinh}(x)$	$x \in \mathbb{R}$	$\ln \left(x+\sqrt{x^{2}+1}\right)$
$\cosh ^{-1}(x) / \operatorname{arcosh}(x)$	$x \geq 1$	$\ln \left(x+\sqrt{x^{2}-1}\right)$
$\tanh ^{-1}(x) / \operatorname{artanh}(x)$	$-1<x<1$	$\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$

Further Calculus

Maclaurin Series

Maclaurin Series Expansion of a function $f(x)$

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\cdots+\frac{x^{r}}{r!} f^{r}(0)+\cdots
$$

Standard Maclaurin Series

$$
\begin{array}{cc}
\mathrm{e}^{x} & 1+x+\frac{x^{2}}{2!}+\cdots \frac{x^{r}}{r!}+\cdots \\
\hline \ln (1+x) & x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{r+1} \frac{x^{r}}{r}+\cdots \\
\hline \sin (x) & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+(-1)^{r} \frac{x^{2 r+1}}{(2 r+1)!}+\cdots \\
\hline \cos (x) & 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+(-1)^{r} \frac{x^{2 r}}{(2 r)!}+\cdots \\
\hline(1+x)^{n} & 1+n x+\frac{n(n-1)}{2!} x+\cdots+\frac{n(n-1) \cdots(n-r+1)}{r!} x^{r}+\cdots
\end{array}
$$

Improper Integrals

The integrand is undefined at a one of the limits of integration	Upper limit: $\int_{a}^{k} f(x) d x=\lim _{b \rightarrow k} \int_{a}^{b} f(x) d x$ Lower limit: $\int_{k}^{c} f(x) d x=\lim _{b \rightarrow k}^{c} \int_{b}^{c} f(x) d x$
The integrand is undefined at a point $x=k$ within the domain of integration	$\int_{a}^{c} f(x) d x=\lim _{b \rightarrow k} \int_{a}^{b} f(x) d x+\lim _{b \rightarrow k} \int_{b}^{c} f(x) d x$
The limit(s) of integration extend to infinity	$\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty}\{I(b)-I(a)\}$
Where $I(k)$ is the integral evaluated at the	
point k	

If these integrals have finite limits, they converge. Else, they diverge

Volumes of Solids of Revolution

Revolving $y=f(x)$ between $x=a$ and $x=b 2 \pi$ rad around the x-axis

Revolving $y=f(x)$ between $y=c$ and $y=d 2 \pi$ rad around the y-axis

Volume of revolution of the region between the two curves $g(x)$ and $f(x)$, where $g(x)>f(x)$, and

$$
g(a)=f(a), g(b)=f(b)
$$

Volume of revolution generated by rotating the curve with parametric equations $x=f(t), y=g(t)$ between two points with parameter values of t_{1} and t_{2} \qquad

Rotation about the x-axis: $V=\pi \int_{t_{1}}^{t_{2}} y^{2} \frac{d x}{d t} d t$ Rotation about the y-axis: $V=\pi \int_{t_{1}}^{t_{2}} x^{2} \frac{d x}{d t} d t$

$$
V=\pi \int_{a}^{b}\left(g(x)^{2}-f(x)^{2}\right) d x
$$

$$
V=\pi \int_{c}^{d} x^{2} d y
$$

Mean value of a function

Mean value of $f(x)$ on the interval $[a, b]$:

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Integration Using Partial Fractions

Expression Type	Partial Fraction Decomposition
$\frac{p x+q}{(x+a)(x+b)}$	$\frac{A}{x+a}+\frac{B}{x+b}$
$\frac{p x+q}{(x+a)^{2}}$	$\frac{A}{x+a}+\frac{B}{(x+a)^{2}}$
$\frac{p x^{2}+q x+r}{(x+a)(x+b)(x+c)}$	$\frac{A}{x+a}+\frac{B}{x+b}+\frac{C}{x+c}$
$\frac{p x^{2}+q x+r}{(x+a)^{2}(x+b)}$	$\frac{A}{x+a}+\frac{B}{(x+a)^{2}}+\frac{C}{x+b}$
$\frac{p x^{2}+q x+r}{(x+a)\left(x^{2}+b^{2}\right)}$	$\frac{A}{x+a}+\frac{B x+C}{x^{2}+b^{2}}$

Differentiation of Inverse Trigonometric and Hyperbolic Functions

$$
\begin{array}{rll}
\frac{d\left(\sin ^{-1} x\right)}{d x}=\frac{1}{\sqrt{1-x^{2}}} & \frac{d\left(\sinh ^{-1} x\right)}{d x}=\frac{1}{\sqrt{1+x^{2}}} \\
\frac{d\left(\cos ^{-1} x\right)}{d x}=-\frac{1}{\sqrt{1-x^{2}}} & \frac{d\left(\cosh ^{-1} x\right)}{d x}=\frac{1}{\sqrt{x^{2}-1}} \\
\frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}} & \frac{d\left(\tanh ^{-1} x\right)}{d x}=\frac{1}{1-x^{2}}
\end{array}
$$

Integration of Four Specific Forms

$$
\begin{array}{ll}
\int \frac{1}{\sqrt{a^{2}+x^{2}}} d x=\sinh ^{-1} \frac{x}{a}+c & \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\cosh ^{-1} \frac{x}{a}+c \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+c & \int \frac{1}{a^{2}+x^{2}} d x=\tan ^{-1} \frac{x}{a}+c
\end{array}
$$

Polar Coordinates

Converting Between Polar and Cartesian Coordinates

Converting from cartesian coordinates (x, y) to polar coordinates (r, θ)

Converting from polar to cartesian coordinates

$$
r=x^{2}+y^{2}, \theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Curve Sketching

$r=a$	Circle of radius a
$\theta=\alpha$	Half-line at an angle α to the x axis
$r=a \theta$	Spiral pattern
$\begin{gathered} \sin (n \theta) \text { or } \\ \cos (n \theta) \end{gathered}$	Flower petal pattern with $2 n$ petals if n is odd and n petals if n is even.
$r=a(b+\cos \theta)$	$\|b\|>2$ gives an egg-shaped curve $\begin{gathered} 1<\|b\|<2 \text { gives a dimpled egg } \\ b=1 \text { gives a cardioid } \end{gathered}$

Area Enclosed by a Polar Curve r($\boldsymbol{\theta}$)

$$
A=\frac{1}{2} \int r^{2} d \theta
$$

Differential Equations

Integrating Factor Method for First Order Differential Equations

To solve differential equations of the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

multiply through by the integrating factor.

Integrating factor:
$I(x)=e^{\int p(x) d x}$

$$
y(x)=\frac{1}{I(x)} \int I(x) Q(x) d x
$$

Second Order Homogenous Equations - General Solutions

Let the auxiliary equation have roots α and γ :
α and γ are real

$$
\alpha=\gamma
$$

α and γ are complex with

$$
\alpha=a+b i, \gamma=a-b i
$$

$$
y=A \mathrm{e}^{\alpha x}+B \mathrm{e}^{\gamma x}
$$

$$
y=A \mathrm{e}^{-\alpha x}+B x \mathrm{e}^{-\alpha x}
$$

$$
y=e^{a x}(A \cos b x+B \sin b x)
$$

Particular Solutions for Second Order Non-Homogenous Equations

For an equation of the form: $y^{\prime \prime}+a y^{\prime}+b y=f(x)$

$f(x)=A \mathrm{e}^{c x}$	$k \mathrm{e}^{c x}$
$f(x)=A x^{n}+\cdots B$	$k_{1} x^{n}+k_{2} x^{n-1}+\cdots+k_{n+1}$
$f(x)=A \sin (c x)+B \cos (c x)$	$y=k_{1} \cos (c x)+k_{2} \sin (c x)$

Simple Harmonic Motion Equation

$$
\frac{d^{2} x}{x t^{2}}=-\omega^{2} x
$$

Time period, T, or a particle moving with simple harmonic motion

Relationship between velocity and displacement for a particle moving with simple harmonic motion. Here, x is the displacement, and a is the maximum displacement

$$
\text { General solution: } \begin{aligned}
x & =A \sin (\omega t)+B \cos (\omega t) \\
& =R \sin (\omega t+\varphi)
\end{aligned}
$$

$$
T=\frac{2 \pi}{\omega}
$$

$$
v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)
$$

Damped Simple Harmonic Motion

$$
\frac{d^{2} x}{d t^{2}}+k \frac{d x}{d t}+\omega^{2} x=0
$$

Type of damping	Coefficient conditions	General solution
Overdamping	$k^{2}-4 \omega^{2}>0$	$x=A e^{\alpha t}+B e^{\beta t}$
Critical damping	$k^{2}-4 \omega^{2}=0$	$x=(A+B t) e^{-\frac{k}{2} t}$
Underdamping	$k^{2}-4 \omega^{2}<0$	$x=e^{-\frac{k}{2} t}(A \sin (q t)+B \cos (q t))$

