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Complex Numbers 

The Language of Complex Numbers 

 
 

Basic Operations 
 
 

Multiplication in modulus-
argument form 

𝑧𝑧1𝑧𝑧2 = 𝑟𝑟1𝑟𝑟2(cos(𝜃𝜃1 + 𝜃𝜃2) +  𝑖𝑖 sin(𝜃𝜃1 + 𝜃𝜃2)) 
 

|𝑧𝑧1𝑧𝑧2| = |𝑧𝑧1||𝑧𝑧2|,  arg(𝑧𝑧1𝑧𝑧2) = arg(𝑧𝑧1) + arg(𝑧𝑧2) 

Division in modulus-
argument form 

𝑧𝑧1
𝑧𝑧2

=
𝑟𝑟1
𝑟𝑟2

(cos(𝜃𝜃1 − 𝜃𝜃2) +  𝑖𝑖 sin(𝜃𝜃1 − 𝜃𝜃2))  

 

�
𝑧𝑧1
𝑧𝑧2
� =

|𝑧𝑧1|
|𝑧𝑧2| ,    arg �

𝑧𝑧1
𝑧𝑧2
� = arg(𝑧𝑧1) − arg(𝑧𝑧2) 

 

Cartesian form of a complex 
number 

𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖 
 

  𝑎𝑎 = 𝑅𝑅𝑅𝑅(𝑧𝑧), 𝑖𝑖 = 𝐼𝐼𝐼𝐼(𝑧𝑧) 

Modulus-argument form of a 
complex number   

𝑧𝑧 =  𝑎𝑎 + 𝑖𝑖𝑖𝑖, |𝑧𝑧| =  𝑟𝑟 = �𝑎𝑎2 + 𝑖𝑖2,  
 

arg(𝑧𝑧) = 𝜃𝜃 = tan−1 �
𝑖𝑖
𝑎𝑎� 

 
𝑧𝑧 = 𝑟𝑟(cos𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃) = [𝑟𝑟,𝜃𝜃] 

 

Exponential form 
𝑧𝑧 =  𝑎𝑎 + 𝑖𝑖𝑖𝑖 = 𝑟𝑟e𝑖𝑖𝑖𝑖  

𝑟𝑟 = �𝑎𝑎2 + 𝑖𝑖2, 𝜃𝜃 = tan−1 �
𝑖𝑖
𝑎𝑎� 

Complex conjugate of a 
complex number  

𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖 has complex conjugate 𝑧𝑧∗ = 𝑎𝑎 − 𝑖𝑖𝑖𝑖  
 

�𝑟𝑟𝑅𝑅𝑖𝑖𝑖𝑖�∗ = 𝑟𝑟𝑅𝑅−𝑖𝑖𝑖𝑖 
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Loci 
 

Loci of points 𝑧𝑧 such that 
|𝑧𝑧 − 𝑎𝑎| = 𝑘𝑘 Circle of radius 𝑘𝑘 centred on (𝑅𝑅𝑅𝑅(𝑎𝑎), 𝐼𝐼𝐼𝐼(𝑎𝑎)) 

Loci of points 𝑧𝑧 such that 
|𝑧𝑧 − 𝑎𝑎| = |𝑧𝑧 − 𝑖𝑖| Perpendicular bisector of the line from 𝑎𝑎 to 𝑖𝑖 

Loci of points 𝑧𝑧 such that 
arg( 𝑧𝑧 − 𝑎𝑎) = 𝛼𝛼 

Half-line starting from 𝑎𝑎 making an angle 𝛼𝛼 with the 
real axis 

 
 

De Moivre’s Theorem  
 

De Moivre’s theorem 𝑧𝑧𝑛𝑛 = (𝑟𝑟�cos(𝜃𝜃) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃)�
𝑛𝑛 = 𝑟𝑟𝑛𝑛�cos(𝑖𝑖𝜃𝜃) + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖𝜃𝜃)� 

cos(𝜃𝜃) =
𝑅𝑅𝑖𝑖𝑖𝑖 + 𝑅𝑅−𝑖𝑖𝑖𝑖

2  

sin(𝜃𝜃) =
𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅−𝑖𝑖𝑖𝑖

2𝑖𝑖  

Let  𝑧𝑧 = 𝑅𝑅𝑖𝑖𝑖𝑖 . Then,  
 

cos(𝑖𝑖𝜃𝜃) = 𝑧𝑧𝑛𝑛+𝑧𝑧−𝑛𝑛

2 
,           sin(𝑖𝑖𝜃𝜃) = 𝑧𝑧𝑛𝑛−𝑧𝑧−𝑛𝑛

2𝑖𝑖 
  

  
𝒏𝒏𝒕𝒕𝒕𝒕 Roots of a Complex Number  

 

Solving to find the 𝑖𝑖𝑡𝑡ℎ 
roots of a complex 

number 𝑤𝑤 

𝑧𝑧𝑛𝑛 = 𝑤𝑤.  Let  𝑧𝑧 = 𝑟𝑟1𝑅𝑅𝑖𝑖𝑖𝑖1 ,𝑤𝑤 = 𝑟𝑟2𝑅𝑅𝑖𝑖𝑖𝑖2   
 

𝑟𝑟𝑛𝑛𝑅𝑅𝑖𝑖𝑛𝑛𝑖𝑖1 = 𝑟𝑟2𝑅𝑅𝑖𝑖𝑖𝑖2   
 

𝑟𝑟𝑅𝑅𝑖𝑖𝑖𝑖1 =  �𝑟𝑟2𝑛𝑛 𝑅𝑅𝑖𝑖�
𝑖𝑖2
𝑛𝑛 +

2𝑘𝑘𝑘𝑘
𝑛𝑛 � 

 

𝑟𝑟 =  �𝑟𝑟2𝑛𝑛 , 𝜃𝜃𝑘𝑘 =
𝜃𝜃2
𝑖𝑖 +

2𝑘𝑘𝑘𝑘
𝑖𝑖 ,𝑘𝑘 ∈ [0,𝑖𝑖 − 1] 

Geometry of the 𝑖𝑖𝑡𝑡ℎ roots 
of a complex number  

The 𝑖𝑖 roots of 𝑧𝑧𝑛𝑛 = 𝑤𝑤 will form a regular polygon in the 
complex plane, with vertices on a circle centred at the 

origin 
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𝒏𝒏𝒕𝒕𝒕𝒕 Roots of Unity  
 

 
 

  

An 𝑖𝑖𝑡𝑡ℎ root of unity  
A complex number 𝑧𝑧 is an 𝑖𝑖𝑡𝑡ℎ root of unity if 𝑧𝑧𝑛𝑛 = 1. They 

are �1, 𝑅𝑅
2𝜋𝜋𝜋𝜋
𝑛𝑛 , 𝑅𝑅

4𝜋𝜋𝜋𝜋
𝑛𝑛 , … , 𝑅𝑅

2(𝑛𝑛−1)𝜋𝜋𝜋𝜋
𝑛𝑛 � = {1,𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑛𝑛−1}  

Sum of the roots of unity  1 + 𝜔𝜔1 + ⋯+ 𝜔𝜔𝑛𝑛−1 = 0  
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Matrices 

The Language of Matrices  

An 𝐼𝐼 × 𝑖𝑖 matrix has 𝐼𝐼 rows and 
n columns �

𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

� 

The null matrix has zeros in every 
entry  �

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

� 

The identity matrix, 𝐼𝐼, is a square 
matrix with 1s on the leading diagonal 

and 0s elsewhere  
�

1 0 0
0 ⋱ 0
0 0 1

� 

The transpose of a matrix 𝑨𝑨, 𝑨𝑨𝑻𝑻, 
swaps the rows and columns of 𝑨𝑨 

�
𝑎𝑎 𝑖𝑖 𝑐𝑐
𝑑𝑑 𝑅𝑅 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

�

𝑇𝑇

=  �
𝑎𝑎 𝑑𝑑 𝑔𝑔
𝑖𝑖 𝑅𝑅 ℎ
𝑐𝑐 𝑓𝑓 𝑖𝑖

� 

   
Addition and Multiplication 

 

Addition and 
subtraction are 

performed element 
wise  

�
𝑎𝑎1 𝑖𝑖1 𝑐𝑐1
𝑑𝑑1 𝑅𝑅1 𝑓𝑓1
𝑔𝑔1 ℎ1 𝑖𝑖1

� ± �
𝑎𝑎2 𝑖𝑖2 𝑐𝑐2
𝑑𝑑2 𝑅𝑅2 𝑓𝑓2
𝑔𝑔2 ℎ2 𝑖𝑖2

� = 

 

�
𝑎𝑎1 ± 𝑎𝑎2 𝑖𝑖1 ± 𝑖𝑖2 𝑐𝑐1 ± 𝑐𝑐2
𝑑𝑑1 ± 𝑑𝑑2 𝑅𝑅1 ± 𝑅𝑅2 𝑓𝑓1 ± 𝑓𝑓2
𝑔𝑔1 ± 𝑔𝑔2 ℎ1 ± ℎ2 𝑖𝑖1 ± 𝑖𝑖2

� 

Matrix multiplication by 
a scalar  

𝑘𝑘 �
𝑎𝑎 𝑖𝑖 𝑐𝑐
𝑑𝑑 𝑅𝑅 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

� = �
𝑎𝑎𝑘𝑘 𝑖𝑖𝑘𝑘 𝑐𝑐𝑘𝑘
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘 𝑓𝑓𝑘𝑘
𝑔𝑔𝑘𝑘 ℎ𝑘𝑘 𝑖𝑖𝑘𝑘

�  

Matrix multiplication  

𝐴𝐴:𝐼𝐼 × 𝑖𝑖 matrix, 𝐵𝐵:𝑖𝑖 × 𝑝𝑝 matrix  

(𝑨𝑨𝑨𝑨)𝑖𝑖𝑖𝑖 =  �𝐴𝐴𝑖𝑖𝑘𝑘𝐵𝐵𝑘𝑘𝑖𝑖

𝑛𝑛

𝑘𝑘=1

 

𝑨𝑨𝑨𝑨:𝑖𝑖 × 𝑝𝑝 matrix  

Associativity and non-
commutativity of 

matrix multiplication  

𝑨𝑨(𝑨𝑨 ∙ 𝑪𝑪) = (𝑨𝑨 ∙ 𝑨𝑨)𝑪𝑪  

𝑨𝑨𝑨𝑨 ≠ 𝑨𝑨𝑨𝑨  (In general. If this is true, 𝑨𝑨 and 𝑨𝑨 commute  
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2D Linear Transformations 

3D Rotations  

 

 

Transformation Associated Matrix  

Reflection in 𝑥𝑥 axis. 
 

�1 0
0 −1� 

Reflection in 𝑦𝑦 axis �−1 0
0 1� 

Enlargement by scale factor 𝑎𝑎 �𝑎𝑎 0
0 𝑎𝑎� 

Stretch parallel to 𝑥𝑥 axis by 
scale factor 𝑎𝑎 �𝑎𝑎 0

0 1� 

Stretch parallel to 𝑦𝑦 axis by 
scale factor 𝑎𝑎 �1 0

0 𝑎𝑎� 

Reflection in line 
 𝑦𝑦 = 𝑥𝑥 

�0 1
1 0� 

 

Reflection in line 
 𝑦𝑦 = −𝑥𝑥 

� 0 −1
−1 0 � 

 

Anticlockwise rotation by an 
angle 𝜃𝜃 �cos(𝜃𝜃) − sin(𝜃𝜃)

sin(𝜃𝜃) cos(𝜃𝜃) � 

Transformation with matrix 𝑨𝑨 
followed by transformation 

with matrix B 
𝑨𝑨𝑨𝑨  
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The direction of positive rotation is taken to be anticlockwise when looking towards the 
origin from the positive side of the axis of rotation. 

 

 

 

 

  

Rotation around 𝑥𝑥 axis by an 
angle 𝜃𝜃 

�
1 0 0
0 cos(𝜃𝜃) − sin(𝜃𝜃)
0 sin(𝜃𝜃) cos(𝜃𝜃)

� 

 

Rotation around 𝑦𝑦 axis by an 
angle 𝜃𝜃 

�
cos(𝜃𝜃) 0 sin(𝜃𝜃)

0 1 0
−sin(𝜃𝜃) 0 cos(𝜃𝜃)

� 

Rotation around 𝑧𝑧 axis by an 
angle 𝜃𝜃 

�
cos(𝜃𝜃) − sin(𝜃𝜃) 0
sin(𝜃𝜃) cos(𝜃𝜃) 0

0 0 1
� 

 

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu



 

Invariance Under Transformations 

Invariant point �𝑥𝑥𝑦𝑦� under 
a transformation 𝑴𝑴  

𝑴𝑴�
𝑥𝑥
𝑦𝑦� =  �

𝑥𝑥
𝑦𝑦� 

Invariant line 𝑙𝑙  The image of any point on 𝑙𝑙 is also on 𝑙𝑙  

 

  

Determinants  

 

 

Determinant of a 2 ×
2 matrix 

det �𝑎𝑎 𝑖𝑖
𝑐𝑐 𝑑𝑑� = 𝑎𝑎𝑑𝑑 − 𝑖𝑖𝑐𝑐 

 

Determinant of a 
matrix product 

 
det𝑨𝑨𝑨𝑨 = det𝑨𝑨 × det𝑨𝑨 

Determinant of a 
multiple of an 𝑖𝑖 × 𝑖𝑖  

matrix   
det(𝑘𝑘𝑨𝑨) = 𝑘𝑘𝑛𝑛det (𝑨𝑨) 

det�
𝑎𝑎 𝑖𝑖 𝑐𝑐
𝑑𝑑 𝑅𝑅 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

� = 𝑎𝑎 ∙ 𝑑𝑑𝑅𝑅𝑑𝑑 �𝑅𝑅 𝑓𝑓
ℎ 𝑖𝑖 �

− 𝑖𝑖 ∙ 𝑑𝑑𝑅𝑅𝑑𝑑 �𝑑𝑑 𝑓𝑓
𝑔𝑔 𝑖𝑖 � + 𝑐𝑐 ∙ 𝑑𝑑𝑅𝑅𝑑𝑑 �𝑑𝑑 𝑅𝑅

𝑔𝑔 ℎ� 
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Inverses of Matrices 

Inverse matrix  
𝑨𝑨−𝟏𝟏 is the inverse matrix of 𝑨𝑨, such that  

𝑨𝑨𝑨𝑨−𝟏𝟏 = 𝑨𝑨−𝟏𝟏𝑨𝑨 = 𝑰𝑰 

Singular matrix  det(𝑨𝑨) = 0 ⇒ 𝑨𝑨−𝟏𝟏  does not exist. 𝑨𝑨 is singular  

Inverse of a 2 × 2 
matrix 

1
𝑎𝑎𝑑𝑑 − 𝑖𝑖𝑐𝑐 �

𝑑𝑑 −𝑖𝑖
−𝑐𝑐 𝑎𝑎 � , 𝑎𝑎𝑑𝑑 − 𝑖𝑖𝑐𝑐 ≠ 0 

Cofactor of an 
element – 

determinant of the 
matrix without the 
element’s row and 

column  

Cofactor of element 𝑎𝑎 in �
𝑎𝑎 𝑖𝑖 𝑐𝑐
𝑑𝑑 𝑅𝑅 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

� is  

det �𝑅𝑅 𝑓𝑓
ℎ 𝑖𝑖 �

 

Cofactor matrix of 𝑨𝑨 – 
made of the cofactors 

of all elements of 𝑨𝑨 
Denoted by 𝑪𝑪  

Inverse of a 3 × 3 
matrix   

𝑨𝑨−𝟏𝟏 =
1

det(𝑨𝑨)𝑪𝑪
𝑇𝑇  

Inverse of a matrix 
product 

(𝑨𝑨𝑨𝑨)−1 = 𝑨𝑨−1𝑨𝑨−1 

Inverse of a 
transformation 

For a transformation given by matrix 𝑴𝑴, its inverse is 

given by 𝑴𝑴−𝟏𝟏 
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Solutions of Simultaneous Equations  

Condition for a system 
of equations 𝑴𝑴𝑴𝑴 = 𝒂𝒂 

to have a unique 
solution 

det(𝑴𝑴) ≠ 0  

For systems with no 
unique solution  

Eliminate a variable from the system. If this leads to 

consistent equations, there are infinitely many solutions. 

If the equations are inconsistent, there are no solutions.  

 

 

 Intersections of Planes – the Geometry of the Systems of Equations  

A system of three linear equations in three variables will define three planes in 3D space. 
The geometry of these planes relates to how many solutions the system of equations has.  

 

 

There is a unique solution 
to the system 

The planes defined by the equations intersect in 

one point. 

There are infinitely many 
solutions to the system  

The planes meet along a line, and form a sheaf. 

There are no solutions to 
the system  

Either all planes are parallel, two planes are 

parallel, or the planes form a triangular prism. 
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Further Vectors 

 

Vector and Cartesian Forms of an Equation of a Straight Line 

Vector equation of 
a line through the 
point 𝒂𝒂 parallel to 

the vector 𝒃𝒃 

𝑴𝑴 = 𝒂𝒂 + 𝜆𝜆𝒃𝒃 
 

Cartesian equation 
of a line in 3D 

For 𝑴𝑴 =  �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� + 𝜆𝜆 �

𝑖𝑖𝑥𝑥
𝑖𝑖𝑦𝑦
𝑖𝑖𝑧𝑧
�, writing 𝜆𝜆 in terms of 𝑥𝑥,𝑦𝑦 and  𝑧𝑧:  

𝑥𝑥 − 𝑎𝑎1
𝑖𝑖1

=
𝑦𝑦 − 𝑎𝑎2
𝑖𝑖2

=
𝑧𝑧 − 𝑎𝑎3
𝑖𝑖3

 

 
 
 

Vector, Cartesian, and Point-Normal Forms of a Plane in 3D 
 

Vector equation of a plane containing 
the point with position vector 𝒂𝒂, and 

containgin vectors 𝒃𝒃 and 𝒄𝒄 
𝑴𝑴 = 𝒂𝒂 + 𝜆𝜆𝒃𝒃 + 𝜇𝜇𝒄𝒄 

Point-normal equation of a plane. 𝒂𝒂 is 
the position vector of a point in the 

plane, and 𝒏𝒏 is the normal to the plane 
𝑴𝑴 ∙ 𝒏𝒏 = 𝒂𝒂 ∙ 𝒏𝒏  

Cartesian equation of a plane in 3D. 

Here, 𝒏𝒏 = �
𝑖𝑖𝑥𝑥
𝑖𝑖𝑦𝑦 
𝑖𝑖𝑧𝑧
� is the normal vector to 

the plane 

𝑖𝑖1𝑥𝑥 + 𝑖𝑖2𝑦𝑦 + 𝑖𝑖3𝑧𝑧 = 𝑑𝑑 
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Scalar Product  
 

 
 

Intersections 
 

Scalar product of two 
vectors 𝒂𝒂 and 𝒃𝒃 𝒂𝒂 ∙ 𝒃𝒃 = �

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� ∙ �

𝑖𝑖1
𝑖𝑖2
𝑖𝑖3
� = 𝑎𝑎1𝑖𝑖1 + 𝑎𝑎2𝑖𝑖2 + 𝑎𝑎3𝑖𝑖3 = |𝒂𝒂||𝒃𝒃| cos(𝜃𝜃) 

Angle 𝜃𝜃 between two 
vectors 𝒂𝒂,𝒃𝒃, or between 

two lines with these 
direction vectors  

𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑖𝑖−1 �
𝒂𝒂 ∙ 𝒃𝒃

|𝒂𝒂||𝒃𝒃|� 

Condition for 𝒂𝒂 and 𝒃𝒃 to 
be perpendicular vectors  𝒂𝒂 ∙ 𝒃𝒃 = 0  

Angle 𝜃𝜃 between two 
planes is the same as the 

angle between their 
normal vectors   

𝑘𝑘1: 𝑴𝑴 ∙ 𝒏𝒏𝟏𝟏 = 𝒂𝒂𝟏𝟏 ∙ 𝒏𝒏𝟏𝟏, 𝑘𝑘2: 𝑴𝑴.𝒏𝒏𝟐𝟐 = 𝒂𝒂𝟐𝟐 ∙ 𝒏𝒏𝟐𝟐, 
𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑖𝑖−1 �

𝒏𝒏𝟏𝟏 ∙ 𝒏𝒏𝟐𝟐
|𝒏𝒏𝟏𝟏||𝒏𝒏𝟐𝟐|� 

Angle 𝜃𝜃 between a line 
and a plane  

𝑴𝑴 = 𝒂𝒂𝟏𝟏 + 𝜆𝜆𝒅𝒅, 𝑘𝑘 =   𝑴𝑴 ∙ 𝒏𝒏 = 𝒂𝒂𝟐𝟐 ∙ 𝒏𝒏   
sin(𝜃𝜃) = � 𝒏𝒏∙𝒅𝒅

|𝒏𝒏||𝒅𝒅|�  

Intersection type  𝑴𝑴𝟏𝟏 = 𝒂𝒂𝟏𝟏 + 𝜆𝜆𝟏𝟏𝒃𝒃𝟏𝟏,          𝑴𝑴𝟐𝟐 = 𝒂𝒂𝟐𝟐 + 𝜆𝜆𝟐𝟐𝒃𝒃𝟐𝟐  

Parallel lines  𝒃𝒃𝟏𝟏 = 𝜇𝜇𝒃𝒃𝟐𝟐 

Intersecting lines  There exist values of 𝜆𝜆1and 𝜆𝜆2 such that  
𝑴𝑴𝟏𝟏 = 𝑴𝑴𝟐𝟐 

Skew  No such 𝜆𝜆1 and 𝜆𝜆2 as above exist 

Intersection of a line and a 
plane  

𝑴𝑴 = �
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� + 𝜆𝜆 �

𝑖𝑖1
𝑖𝑖2
𝑖𝑖3
� , 𝝅𝝅 = 𝒄𝒄𝒄𝒄 + 𝒅𝒅𝒅𝒅 + 𝒇𝒇𝒇𝒇 = 𝒈𝒈  

If there exists a 𝜆𝜆 such that  
𝑐𝑐(𝑎𝑎1 + 𝜆𝜆𝑖𝑖1) + 𝑑𝑑(𝑎𝑎2 + 𝜆𝜆𝑖𝑖2) + 𝑓𝑓(𝑎𝑎3 + 𝜆𝜆𝑖𝑖3) = 𝑔𝑔  

Then the line and plane intersect. If no such 𝜆𝜆 exists, they do 
not intersect. 
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Vector Product 

 

 
 
 
 
 

 
Shortest Distances 

  

Shortest distance, 𝐷𝐷,  
between two parallel lines  

𝑟𝑟1 = 𝒂𝒂 + 𝜆𝜆1𝒅𝒅, 𝑴𝑴𝟐𝟐 = 𝒃𝒃 + 𝜆𝜆2𝒅𝒅  
 

𝐷𝐷 = |𝒂𝒂 − 𝒃𝒃| sin(𝜃𝜃) where  
 

cos(𝜃𝜃) =
(𝒂𝒂 − 𝒃𝒃) ∙ 𝒅𝒅
|𝒂𝒂 − 𝒃𝒃||𝒅𝒅|   

 

Shortest distance, 𝐷𝐷,  
between a point and a line 

For a point with co-ordinates (𝑥𝑥1,𝑦𝑦1), and a line given 
by 

 
 𝑎𝑎𝑥𝑥 + 𝑖𝑖𝑦𝑦 = 𝑐𝑐: 

 

𝐷𝐷 =
|𝑎𝑎𝑥𝑥1 + 𝑖𝑖𝑦𝑦1 − 𝑐𝑐|

√𝑎𝑎2 + 𝑖𝑖2
 

 

Shortest distance, 𝐷𝐷,  
between a point and a 

plane 

For a point with position vector 𝒃𝒃 and a plane with 
equation 𝑴𝑴 ∙ 𝒏𝒏 = 𝑝𝑝: 

 

𝐷𝐷 =
|𝒃𝒃 ∙ 𝒏𝒏 − 𝑝𝑝|

|𝒏𝒏|   

Shortest distance, 𝐷𝐷, 
between two skew lines 

For points 𝒂𝒂, 𝒃𝒃 on the lines and a mutually 
perpendicular vector 𝒏𝒏: 

 

𝐷𝐷 =
(𝒃𝒃 − 𝒂𝒂) ∙ 𝒏𝒏

|𝒏𝒏|  

 
 

Vector Product – gives a 
vector perpendicular to 

both 𝒂𝒂 and 𝒃𝒃 
𝒂𝒂 × 𝒃𝒃 = �

𝑎𝑎2𝑖𝑖3 − 𝑖𝑖2𝑎𝑎3
𝑎𝑎3𝑖𝑖1 − 𝑖𝑖3𝑎𝑎1
𝑎𝑎1𝑖𝑖2 − 𝑖𝑖1𝑎𝑎2

� 
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Further Algebra 

 
 

Roots of Equations 
 

 
 

Transformations of Equations  

 
 

Partial Fractions  

 

Relationship between 
the roots and 

coefficients of a 
quadratic polynomial 

Let 𝑝𝑝 and 𝑞𝑞 be roots of 𝑎𝑎𝑥𝑥2 + 𝑖𝑖𝑥𝑥 + 𝑐𝑐 = 0. Then,  

𝑝𝑝 + 𝑞𝑞 =  −
𝑖𝑖
𝑎𝑎 , 𝑝𝑝𝑞𝑞 =

𝑐𝑐
𝑎𝑎 

Relationship between 
the roots and 

coefficients of a cubic 
polynomial 

Let 𝑝𝑝, 𝑞𝑞, and 𝑟𝑟 be the roots of 𝑎𝑎𝑥𝑥3 + 𝑖𝑖𝑥𝑥2 + 𝑐𝑐𝑥𝑥 + 𝑑𝑑 = 0. Then, 

𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟 =  −
𝑖𝑖
𝑎𝑎 , 𝑝𝑝𝑞𝑞 + 𝑞𝑞𝑟𝑟 + 𝑟𝑟𝑝𝑝 =

𝑐𝑐
𝑎𝑎 , 𝑝𝑝𝑞𝑞𝑟𝑟 =  −

𝑑𝑑
𝑎𝑎 

Relationship between 
the roots and 

coefficients of a 
quartic polynomial 

Let 𝑝𝑝, 𝑞𝑞, 𝑟𝑟 and 𝑖𝑖 be the roots of 𝑎𝑎𝑥𝑥4 + 𝑖𝑖𝑥𝑥3 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥 + 𝑅𝑅 = 0.  
Then,  

 

𝑝𝑝 + 𝑞𝑞 + 𝑟𝑟 + 𝑖𝑖 =  −
𝑖𝑖
𝑎𝑎 , 𝑝𝑝𝑞𝑞 + 𝑝𝑝𝑟𝑟 + 𝑝𝑝𝑖𝑖 + 𝑞𝑞𝑟𝑟 + 𝑞𝑞𝑖𝑖 + 𝑟𝑟𝑖𝑖 =

𝑐𝑐
𝑎𝑎,  

𝑝𝑝𝑞𝑞𝑟𝑟 + 𝑝𝑝𝑞𝑞𝑖𝑖 + 𝑝𝑝𝑟𝑟𝑖𝑖 + 𝑞𝑞𝑟𝑟𝑖𝑖 =  −
𝑑𝑑
𝑎𝑎 , 𝑝𝑝𝑞𝑞𝑟𝑟𝑖𝑖 =

𝑅𝑅
𝑎𝑎 

 

Transformation 
of the roots of an 
equation, given a 
transformation 
of the equation  

Let an equation in 𝑥𝑥 have root 𝑥𝑥 = 𝑝𝑝. Given a substitution 
𝑢𝑢 = 𝑓𝑓(𝑥𝑥), the transformed equation has a root 𝑢𝑢 = 𝑓𝑓(𝑝𝑝)  

The partial 
fraction 

decomposition 
for denominators 
of the form 1

𝑞𝑞2+𝑥𝑥2
  

𝑓𝑓(𝑥𝑥)
(𝑥𝑥 − 𝑝𝑝)(𝑥𝑥2 + 𝑞𝑞2) =

𝐴𝐴
𝑥𝑥 − 𝑝𝑝 +

𝐵𝐵𝑥𝑥 + 𝑐𝑐
𝑥𝑥2 + 𝑞𝑞2 
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Series 
 
 

Summation of Series  

 
The Method of Differences 

 

 
 
 
 
 
 
 

If a general term of a series, 𝑣𝑣𝑟𝑟 , can be written in the form 𝑣𝑣𝑟𝑟 = 𝑓𝑓(𝑟𝑟 + 1) − 𝑓𝑓(𝑟𝑟) 
for some function 𝑓𝑓, then  

 
∑ 𝑢𝑢𝑟𝑟 = 𝑓𝑓(𝑖𝑖 + 1) − 𝑓𝑓(1)𝑛𝑛
𝑟𝑟=1    

�𝑘𝑘
𝑟𝑟=𝑛𝑛

𝑟𝑟=1

= 𝑖𝑖𝑘𝑘 �𝑟𝑟
𝑟𝑟=𝑛𝑛

𝑟𝑟=1

=
𝑖𝑖
2 (𝑖𝑖 + 1) 

�𝑟𝑟2
𝑟𝑟=𝑛𝑛

𝑟𝑟=1

=
1
6𝑖𝑖(𝑖𝑖 + 1)(2𝑖𝑖 + 1) �𝑟𝑟3

𝑟𝑟=𝑛𝑛

𝑟𝑟=1

=
1
4𝑖𝑖

2(𝑖𝑖 + 1)2 

∑(𝑢𝑢𝑟𝑟 + 𝑣𝑣𝑟𝑟) = ∑𝑢𝑢𝑟𝑟 + ∑𝑣𝑣𝑟𝑟 ∑𝑐𝑐𝑢𝑢𝑟𝑟 = 𝑐𝑐∑𝑢𝑢𝑟𝑟 
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Hyperbolic Functions 

 
 
 

Definitions, Domains, Derivatives, and Integrals 
 

Function Definition and 
Domain 

Derivative Indefinite Integral  

sinh(𝑥𝑥) e𝑥𝑥−e−𝑥𝑥

2
, 𝑥𝑥 ∈ ℝ 

𝑑𝑑(sinh𝑥𝑥)
𝑑𝑑𝑥𝑥

= cosh𝑥𝑥 cosh(𝑥𝑥) + 𝑐𝑐 

cosh(𝑥𝑥) 
e𝑥𝑥+e−𝑥𝑥

2
, 𝑥𝑥 ∈ ℝ 
 

𝑑𝑑(sinh𝑥𝑥)
𝑑𝑑𝑥𝑥 = cosh𝑥𝑥 sinh(𝑥𝑥) + 𝑐𝑐  

tanh(𝑥𝑥) 
e𝑥𝑥−e−𝑥𝑥

e𝑥𝑥+e−𝑥𝑥
, 𝑥𝑥 ∈ ℝ 
 

𝑑𝑑(tanh𝑥𝑥)
𝑑𝑑𝑥𝑥

=
1

cosh2 𝑥𝑥  
ln|𝑐𝑐𝑐𝑐𝑖𝑖ℎ(𝑥𝑥)| + 𝑐𝑐  

cosh2(𝑥𝑥) − sinh2(𝑥𝑥) ≡ 1 

 
 

Inverse Hyperbolic Functions  
 

 
 
 
 
 

Function Domain Logarithmic Form 

sinh−1(𝑥𝑥)/ arsinh(𝑥𝑥)  𝑥𝑥 ∈ ℝ ln(𝑥𝑥 + �𝑥𝑥2 + 1) 

cosh−1(𝑥𝑥)/ arcosh(𝑥𝑥) 𝑥𝑥 ≥ 1 ln(𝑥𝑥 + �𝑥𝑥2 − 1) 

tanh−1(𝑥𝑥)/ artanh(𝑥𝑥) −1 < 𝑥𝑥 < 1  
1
2 ln �

1 + 𝑥𝑥
1 − 𝑥𝑥�
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Further Calculus 
 
 

Maclaurin Series 
 

 
 
 

Standard Maclaurin Series  
 
 

e𝑥𝑥 1 + 𝑥𝑥 +
𝑥𝑥2

2! + ⋯
𝑥𝑥𝑟𝑟

𝑟𝑟! + ⋯ 
 

ln(1 + 𝑥𝑥) 𝑥𝑥 −
𝑥𝑥2

2 +
𝑥𝑥3

3 + ⋯+ (−1)𝑟𝑟+1
𝑥𝑥𝑟𝑟

𝑟𝑟 + ⋯  

sin(𝑥𝑥) 𝑥𝑥 −
𝑥𝑥3

3! +
𝑥𝑥5

5! + ⋯+ (−1)𝑟𝑟
𝑥𝑥2𝑟𝑟+1

(2𝑟𝑟 + 1)! + ⋯ 

cos(𝑥𝑥) 1 −
𝑥𝑥2

2! +
𝑥𝑥4

4! + ⋯+ (−1)𝑟𝑟
𝑥𝑥2𝑟𝑟

(2𝑟𝑟)! + ⋯ 

(1 + 𝑥𝑥)𝑛𝑛 1 + 𝑖𝑖𝑥𝑥 +
𝑖𝑖(𝑖𝑖 − 1)

2! 𝑥𝑥 + ⋯+
𝑖𝑖(𝑖𝑖 − 1) … (𝑖𝑖 − 𝑟𝑟 + 1)

𝑟𝑟! 𝑥𝑥𝑟𝑟 + ⋯ 

 
 
 
 
  

Maclaurin Series Expansion of a function 𝑓𝑓(𝑥𝑥) 

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0) + 𝑥𝑥𝑓𝑓′(0) +
𝑥𝑥2

2! 𝑓𝑓
′′(0) + ⋯+

𝑥𝑥𝑟𝑟

𝑟𝑟! 𝑓𝑓
𝑟𝑟(0) + ⋯ 
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Improper Integrals 

 

 
 

Volumes of Solids of Revolution 
 

Revolving 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) between 𝑥𝑥 = 𝑎𝑎 
and 𝑥𝑥 = 𝑖𝑖 2𝑘𝑘 rad around the 𝑥𝑥-axis 𝑉𝑉 = 𝑘𝑘� 𝑦𝑦2𝑑𝑑𝑥𝑥 

𝑏𝑏

𝑎𝑎
 

Revolving 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) between 𝑦𝑦 = 𝑐𝑐 
and 𝑦𝑦 = 𝑑𝑑 2𝑘𝑘 rad around the 𝑦𝑦-axis 

𝑉𝑉 = 𝑘𝑘� 𝑥𝑥2𝑑𝑑𝑦𝑦 
𝑑𝑑

𝑐𝑐
 

Volume of revolution of the region 
between the two curves 𝑔𝑔(𝑥𝑥) and 
𝑓𝑓(𝑥𝑥), where 𝑔𝑔(𝑥𝑥) > 𝑓𝑓(𝑥𝑥), and 
𝑔𝑔(𝑎𝑎) = 𝑓𝑓(𝑎𝑎),𝑔𝑔(𝑖𝑖) = 𝑓𝑓(𝑖𝑖) 

𝑉𝑉 = 𝑘𝑘� (𝑔𝑔(𝑥𝑥)2 − 𝑓𝑓(𝑥𝑥)2)𝑑𝑑𝑥𝑥 
𝑏𝑏

𝑎𝑎
 

Volume of revolution generated by 
rotating the curve with parametric 

equations 𝑥𝑥 = 𝑓𝑓(𝑑𝑑),𝑦𝑦 = 𝑔𝑔(𝑑𝑑) 
between two points with parameter 

values of 𝑑𝑑1 and 𝑑𝑑2 

Rotation about the 𝑥𝑥-axis: 𝑉𝑉 = 𝑘𝑘 ∫ 𝑦𝑦2 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑 𝑡𝑡2

𝑡𝑡1
 

Rotation about the 𝑦𝑦- axis: 𝑉𝑉 = 𝑘𝑘 ∫ 𝑥𝑥2 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑 𝑡𝑡2

𝑡𝑡1
 

 
  

The integrand is undefined at 
a one of the limits of 

integration   

Upper limit: ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = lim
𝑏𝑏→𝑘𝑘

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 𝑏𝑏
𝑎𝑎

𝑘𝑘
𝑎𝑎  

Lower limit: ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = lim
𝑏𝑏→𝑘𝑘

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 𝑐𝑐
𝑏𝑏

𝑐𝑐
𝑘𝑘  

The integrand is undefined at 
a point 𝑥𝑥 = 𝑘𝑘 within the 

domain of integration 
� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = lim

𝑏𝑏→𝑘𝑘
� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 + lim

𝑏𝑏→𝑘𝑘
� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 
𝑐𝑐

𝑏𝑏

𝑏𝑏

𝑎𝑎

𝑐𝑐

𝑎𝑎
 

The limit(s) of integration 
extend to infinity 

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = lim
𝑏𝑏→ ∞

{𝐼𝐼(𝑖𝑖)− 𝐼𝐼(𝑎𝑎)}
∞

𝑎𝑎
 

Where 𝐼𝐼(𝑘𝑘) is the integral evaluated at the 
point 𝑘𝑘 

If these integrals have finite limits, they converge. Else, they diverge 
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Mean value of a function 
 

 
 
 
 
 

 
 

Integration Using Partial Fractions  
 

Expression Type Partial Fraction Decomposition 

𝑝𝑝𝑥𝑥 + 𝑞𝑞
(𝑥𝑥 + 𝑎𝑎)(𝑥𝑥 + 𝑖𝑖) 

𝐴𝐴
𝑥𝑥 + 𝑎𝑎 +

𝐵𝐵
𝑥𝑥 + 𝑖𝑖 

𝑝𝑝𝑥𝑥 + 𝑞𝑞 
(𝑥𝑥 + 𝑎𝑎)2 

𝐴𝐴
𝑥𝑥 + 𝑎𝑎 +

𝐵𝐵
(𝑥𝑥 + 𝑎𝑎)2 

𝑝𝑝𝑥𝑥2 + 𝑞𝑞𝑥𝑥 + 𝑟𝑟
(𝑥𝑥 + 𝑎𝑎)(𝑥𝑥 + 𝑖𝑖)(𝑥𝑥 + 𝑐𝑐) 

𝐴𝐴
𝑥𝑥 + 𝑎𝑎 +

𝐵𝐵
𝑥𝑥 + 𝑖𝑖 +

𝐶𝐶
𝑥𝑥 + 𝑐𝑐 

𝑝𝑝𝑥𝑥2 + 𝑞𝑞𝑥𝑥 + 𝑟𝑟
(𝑥𝑥 + 𝑎𝑎)2(𝑥𝑥 + 𝑖𝑖) 

𝐴𝐴
𝑥𝑥 + 𝑎𝑎 +

𝐵𝐵
(𝑥𝑥 + 𝑎𝑎)2 +

𝐶𝐶
𝑥𝑥 + 𝑖𝑖 

𝑝𝑝𝑥𝑥2+𝑞𝑞𝑥𝑥+𝑟𝑟
(𝑥𝑥+𝑎𝑎)(𝑥𝑥2+𝑏𝑏2)

  
𝐴𝐴

𝑥𝑥 + 𝑎𝑎 +
𝐵𝐵𝑥𝑥 + 𝐶𝐶
𝑥𝑥2 + 𝑖𝑖2 

 
  

Mean value of 𝑓𝑓(𝑥𝑥) on the interval [𝑎𝑎, 𝑖𝑖]: 
1

𝑖𝑖 − 𝑎𝑎� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎
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Differentiation of Inverse Trigonometric and Hyperbolic Functions 

 
 

Integration of Four Specific Forms 
 

�
1

√𝑎𝑎2 + 𝑥𝑥2
𝑑𝑑𝑥𝑥 = sinh−1

𝑥𝑥
𝑎𝑎 + 𝑐𝑐 �

1
√𝑥𝑥2 − 𝑎𝑎2

𝑑𝑑𝑥𝑥 = cosh−1
𝑥𝑥
𝑎𝑎 + 𝑐𝑐 

�
1

√𝑎𝑎2 − 𝑥𝑥2
𝑑𝑑𝑥𝑥 = sin−1

𝑥𝑥
𝑎𝑎 + 𝑐𝑐 �

1
𝑎𝑎2 + 𝑥𝑥2 𝑑𝑑𝑥𝑥 = tan−1

𝑥𝑥
𝑎𝑎 + 𝑐𝑐 

 
 
 
 
 
 
 
 
 

𝑑𝑑(sin−1 𝑥𝑥)
𝑑𝑑𝑥𝑥

=
1

√1 − 𝑥𝑥2
 

𝑑𝑑(sinh−1 𝑥𝑥)
𝑑𝑑𝑥𝑥

=
1

√1 + 𝑥𝑥2
 

𝑑𝑑(cos−1 𝑥𝑥)
𝑑𝑑𝑥𝑥

= −
1

√1 − 𝑥𝑥2
 

𝑑𝑑(cosh−1 𝑥𝑥)
𝑑𝑑𝑥𝑥

=
1

√𝑥𝑥2 − 1
 

𝑑𝑑(tan−1 𝑥𝑥)
𝑑𝑑𝑥𝑥

=
1

1 + 𝑥𝑥2 
𝑑𝑑(tanh−1 𝑥𝑥)

𝑑𝑑𝑥𝑥
=

1
1 − 𝑥𝑥2 
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Polar Coordinates 
 

Converting Between Polar and Cartesian Coordinates  

 
Curve Sketching 

Area Enclosed by a Polar Curve 𝑴𝑴(𝜽𝜽) 
 

 
 
 

 
𝐴𝐴 =

1
2�𝑟𝑟2𝑑𝑑𝜃𝜃 

Converting from cartesian 
coordinates (𝑥𝑥, 𝑦𝑦)to polar 

coordinates (𝑟𝑟,𝜃𝜃) 
𝑟𝑟 = 𝑥𝑥2 + 𝑦𝑦2,  θ = tan−1 �𝑦𝑦

𝑥𝑥
� 

Converting from polar to 
cartesian coordinates  

𝑥𝑥 = 𝑟𝑟 cos𝜃𝜃,  𝑦𝑦 = 𝑟𝑟 sin𝜃𝜃 

 

𝑟𝑟 = 𝑎𝑎 Circle of radius 𝑎𝑎 

𝜃𝜃 = 𝛼𝛼 Half-line at an angle 𝛼𝛼 to the 𝑥𝑥 axis 

𝑟𝑟 = 𝑎𝑎𝜃𝜃 Spiral pattern 

sin(𝑖𝑖𝜃𝜃) or 
cos(𝑖𝑖𝜃𝜃) 

Flower petal pattern with 2𝑖𝑖 petals if 𝑖𝑖 is 

odd and 𝑖𝑖 petals if 𝑖𝑖 is even. 

𝑟𝑟 = 𝑎𝑎(𝑖𝑖 + cos𝜃𝜃) 

|𝑖𝑖| > 2 gives an egg-shaped curve 

1 < |𝑖𝑖| < 2 gives a dimpled egg 

𝑖𝑖 = 1 gives a cardioid  
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Differential Equations 

 
Integrating Factor Method for First Order Differential Equations 

 
To solve differential equations of the form 

 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

+ 𝑃𝑃(𝑥𝑥)𝑦𝑦 = 𝑄𝑄(𝑥𝑥),  

multiply through by the integrating factor. 

Integrating factor: 
 
 

𝐼𝐼(𝑥𝑥) = 𝑅𝑅∫ 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥 

General solution: 
 

𝑦𝑦(𝑥𝑥) =
1
𝐼𝐼(𝑥𝑥)∫ 𝐼𝐼(𝑥𝑥)𝑄𝑄(𝑥𝑥)𝑑𝑑𝑥𝑥 

 
 

Second Order Homogenous Equations – General Solutions 
 

Let the auxiliary equation have roots 𝛼𝛼 and 𝛾𝛾: 

 

 𝛼𝛼 and 𝛾𝛾 are real 𝑦𝑦 = 𝐴𝐴e𝛼𝛼𝑥𝑥 + 𝐵𝐵e𝛾𝛾𝑥𝑥 
 

𝛼𝛼 = 𝛾𝛾 𝑦𝑦 = 𝐴𝐴e−𝛼𝛼𝑥𝑥 + 𝐵𝐵𝑥𝑥e−𝛼𝛼𝑥𝑥 

𝛼𝛼 and 𝛾𝛾 are complex with 
𝛼𝛼 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖, 𝛾𝛾 = 𝑎𝑎 − 𝑖𝑖𝑖𝑖 

𝑦𝑦 = 𝑅𝑅𝑎𝑎𝑥𝑥(𝐴𝐴 cos𝑖𝑖𝑥𝑥 + 𝐵𝐵 sin𝑖𝑖𝑥𝑥) 
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Particular Solutions for Second Order Non-Homogenous Equations 

 
For an equation of the form: 𝑦𝑦′′ + 𝑎𝑎𝑦𝑦′ + 𝑖𝑖𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 

 

 
 

Simple Harmonic Motion Equation 
 

𝑑𝑑2𝑥𝑥
𝑥𝑥𝑑𝑑2 =  −𝜔𝜔2𝑥𝑥 

General solution: 𝑥𝑥 = 𝐴𝐴sin(𝜔𝜔𝑑𝑑) + 𝐵𝐵cos(𝜔𝜔𝑑𝑑) 

                      = 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖(𝜔𝜔𝑑𝑑 + 𝜑𝜑) 

Time period, 𝑇𝑇, or a particle moving 
with simple harmonic motion 

𝑇𝑇 =
2𝑘𝑘
𝜔𝜔  

Relationship between velocity and 
displacement for a particle moving 

with simple harmonic motion. Here, 
𝑥𝑥 is the displacement, and 𝑎𝑎 is the 

maximum displacement  

𝑣𝑣2 =  𝜔𝜔2(𝑎𝑎2 − 𝑥𝑥2) 

 
 
 

 𝑓𝑓(𝑥𝑥) = 𝐴𝐴e𝑐𝑐𝑥𝑥 𝑘𝑘e𝑐𝑐𝑥𝑥 

𝑓𝑓(𝑥𝑥) = 𝐴𝐴𝑥𝑥𝑛𝑛 + ⋯𝐵𝐵 𝑘𝑘1𝑥𝑥𝑛𝑛 + 𝑘𝑘2𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑘𝑘𝑛𝑛+1    

𝑓𝑓(𝑥𝑥) = 𝐴𝐴 sin(𝑐𝑐𝑥𝑥) + 𝐵𝐵 cos(𝑐𝑐𝑥𝑥)   𝑦𝑦 = 𝑘𝑘1 cos( 𝑐𝑐𝑥𝑥) + 𝑘𝑘2 sin(𝑐𝑐𝑥𝑥) 
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Damped Simple Harmonic Motion  

 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑑𝑑2 + 𝑘𝑘

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑 + 𝜔𝜔2𝑥𝑥 = 0  

Type of damping Coefficient conditions General solution 

Overdamping 𝑘𝑘2 − 4𝜔𝜔2 > 0  𝑥𝑥 = 𝐴𝐴𝑅𝑅𝛼𝛼𝑡𝑡 + 𝐵𝐵𝑅𝑅𝛽𝛽𝑡𝑡 

Critical damping  𝑘𝑘2 − 4𝜔𝜔2 = 0  𝑥𝑥 = (𝐴𝐴 + 𝐵𝐵𝑑𝑑)𝑅𝑅−
𝑘𝑘
2𝑡𝑡 

Underdamping 𝑘𝑘2 − 4𝜔𝜔2 < 0  𝑥𝑥 = 𝑅𝑅−
𝑘𝑘
2𝑡𝑡�𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖(𝑞𝑞𝑑𝑑) + 𝐵𝐵𝑐𝑐𝑐𝑐𝑖𝑖(𝑞𝑞𝑑𝑑)� 
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